Mercapturate metabolism of 4-hydroxy-2-nonenal in rat and human cerebrum.

نویسندگان

  • Kathrin R Sidell
  • Kathleen S Montine
  • Matrhew J Picklo
  • Sandra J Olsen
  • Ventkataraman Amarnath
  • Thomas J Montine
چکیده

4-Hydroxy-2-nonenal (HNE), a potent toxin formed in the brain from oxidation of polyunsaturated fatty acids, is increased in Alzheimer disease (AD), where it is a proposed effector of amyloid beta peptide-mediated neurotoxicity. Detoxification of HNE via the mercapturic acid pathway (MAP) is the primary means by which other organs, such as liver, limit its toxic effects. Here we examined the distribution and activity of MAP detoxification for HNE in cerebrum. Our results showed that rat cerebral cortex and especially synaptosomes were less well equipped to detoxify HNE via the MAP than liver. Glutathione transferases (GSTs) catalyze the committed step in the MAP; GST-mu and GST-pi, but not OST-alpha, were detected in neurons and astrocytes in cerebrum from AD patients and controls. MAP activity in frontal cortex of AD patients was modestly but significantly increased compared to controls. These data suggest that lipid peroxidation may present a greater toxic burden to cerebrum than to other organs, and that a component of response to injury in late stage AD is a slight increase in MAP activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4-Hydroxy-2-Nonenal-Modified Glyceraldehyde-3-Phosphate Dehydrogenase Is Degraded by Cathepsin G in Rat Neutrophils

Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However,...

متن کامل

Enantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydrogenase isozyme and Mg2+ dependent.

trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic alpha,beta-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in intact rat brain mitochondria, (R)-HNE...

متن کامل

Cytotoxicity and metabolism of 4 - hydroxy - 2 - nonenal and 2 - nonenal in H 202 - resistant cell lines

Toxic aldehydes, such as 4-hydroxy-2-nonenal (4HNE) and 2-nonenal (2NE), formed during lipid peroxidation have been isolated and implicated in the cytotoxic effects of oxidative stress. We have investigated the cytotoxicity and metabolism of 4HNE and 2NE in control (HA-1) cells and in two H202-resistant Chinese hamster fibroblast cell lines. The H202resistant cells were found to be significantl...

متن کامل

Possible involvement of transient receptor potential channels in electrophile-induced insulin secretion from RINm5F cells.

Endogenously produced reactive oxygen species reportedly stimulate insulin secretion from islet β-cells. However, the molecular machinery that governs the oxidant-induced insulin secretion has yet to be determined. The present study demonstrates, using rat islet β-cell-derived RINm5F cells, the involvement of the transient receptor potential (TRP) cation channels in the insulin secretion induce...

متن کامل

Mechanism of destruction of microtubule structures by 4-hydroxy-2-nonenal.

A major end product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is an electrophilic alkenal and produces Michael adducts with cellular proteins. It is known that exposure of cultured cells to HNE causes rapid disappearance of microtubule networks. In this study we addressed the mechanism. Immunochemical studies revealed that HNE preferentially modified alpha-tubulin in rat primary neurona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 62 2  شماره 

صفحات  -

تاریخ انتشار 2003